
3 | P a g e

University of Global Village (UGV), Barishal

Dept. of Electrical and Electronic Engineering (EEE)

Lab Manual

Microcontroller Based Project

Noor Md Shahriar
BSc in EEE, RUET
Senior Lecturer
Co-chairman, Dept. of EEE
University of Global Village (UGV)
874/322, C&B Road, Barishal, Bangladesh.

 Contact: +8801743500587
 Facebook | LinkedIn | Twitter

https://www.ruet.ac.bd/
https://ugv.edu.bd/teacher/details/29
https://ugv.edu.bd/
https://goo.gl/maps/1hZLwtfHXi9HeFUo8
https://www.facebook.com/Noor.Md.Shahriar/
https://www.linkedin.com/in/noor-md-shahriar/
https://twitter.com/NoorMd_Shahriar

4 | P a g e

Table of Contents
Course Rationale .. 5

Course Objectives .. 5

Course Learning Outcomes (CLOs) .. 5

Course Content ... 5

Course Schedule ... 6

PREFERRED TOOLS .. 7

TEXT/REFERENCE BOOKS .. 7

Experiment no: 01 .. 8

Experiment no: 02 .. 14

Experiment no: 03 ... 15

Experiment no: 04 .. 26

Experiment no: 05 .. 28

Experiment no: 06 ... 30

Experiment no: 07 ... 32

Experiment no: 08 .. 34

Experiment no: 09 .. 36

Experiment no: 10 .. 39

Experiment no: 11 ... 40

Experiment no: 12 .. 42

Experiment no: 13 ... 44

Experiment no: 14 ... 49

Experiment no: 15 .. 51

Experiment no: 16 .. 55

Experiment no: 17 .. 60

5 | P a g e

Course Rationale
Microcontrollers are pivotal in the development of embedded systems, which form the backbone of
modern technology. This course bridges theoretical understanding and hands-on experience with
microcontroller systems, emphasizing their architecture, programming, and application in real-
world scenarios. By exploring tools like EMU8086, Arduino, and Keil uVision, students gain
practical insights into system development and troubleshooting. The course prepares students for
challenges in automation, IoT, and digital system design, aligning with current industry demands.

Course Objectives

• Equip students with foundational knowledge of microcontroller architecture, programming,
and interfacing techniques.

• Enable proficiency in using simulation tools like Keil uVision, Proteus, and EMU8086 for
development and debugging.

• Train students to interface microcontrollers with various peripheral devices such as LEDs,
motors, sensors, and displays.

• Foster an understanding of programmable interfaces and their application in embedded
systems.

• Enhance skills in designing and implementing practical microcontroller-based solutions.

Course Learning Outcomes (CLOs)
After the successful completion of this course, students are expected to be able to:

CLO1 Understand and operate microcontroller systems, including the
8086-trainer board, EMU8086 emulator, and Keil C51 Evaluation
Kit.

CLO2 Develop and debug assembly-level programming for the 8086
microprocessor and 8051 microcontroller.

CLO3 Implement interfacing techniques for various sensors, actuators, and
displays with Arduino.

CLO4 Design and test microcontroller-based applications, including
Programmable Peripheral Interfaces.

CLO5 Analyze and troubleshoot microcontroller-based systems for real-
world applications.

Course Content

Sl.
No.

Topic & Details Class
Hours

CLO
Mapping

1

Introduction to Microcontroller Systems
- Overview of 8086 Trainer Board and EMU8086 Emulator.
- Basics of microcontroller architecture and applications in embedded
systems.

4 CLO1

2
8086 Microprocessor Fundamentals
- Registers, memory organization, and assembly-level programming.
- Debugging and troubleshooting techniques.

5 CLO1, CLO2

6 | P a g e

3
Introduction to 8051 Microcontroller
- 8051 architecture and its programming basics.
- Simulation using Keil C51 Evaluation Kit and Proteus.

3 CLO1

4
Arduino Interfacing Basics
- LED blinking, 4x4 keypad interfacing, and sensor integration.
- Potentiometer, piezo buzzer, and motor control with drivers.

6 CLO3

5
Display and Peripheral Programming
- LCD, Infrared sensor integration.
- Seven-segment and LED interfacing with PPI (8255A).

5 CLO3, CLO4

6 Advanced Interfacing Techniques
- Digital-to-Analog Converter and Stepper Motor control. 4 CLO4

7 Capstone Project
- Real-world application development using microcontrollers. 3 CLO4, CLO5

Course Schedule

Week Topic & Detail Teaching-

Learning Strategy
Assessment Strategy Mapping

with CLO
1 Introduction to Microcontroller

Systems: 8086-trainer board,
EMU8086 emulator

Lecture with hands-
on demonstration

Observation during
lab sessions, short
quiz

CLO 1

2 8086 Microprocessor Basics:
Registers, assembly-level
programming

Practical coding
exercises, live
debugging

Submission of
assembly-level
programs

CLO 2

3 Introduction to 8051
Microcontroller: Keil C51
Evaluation Kit, Proteus simulation
tools

Software setup,
walkthrough, and
simulation exercises

Report on simulation
tasks CLO 1, CLO

2

4 Delay & Clock Speed
Modification: Keilu Vision 5
Simulation Software

Guided exercises
with delay and
clock speed
adjustments

Functional validation
of simulation
modifications CLO 3

5 Basic Interfacing with Arduino:
LED blinking, 4x4 keypad

Practical interfacing
tasks,
troubleshooting

Submission of
working interfacing
circuits

CLO 3

6 Potentiometer & Buzzer
Interfacing: Serial Monitor
printing, piezo buzzer

Hands-on practice,
feedback on design

Report submission
CLO 3

7 Motor Interfacing: Servo motor,
DC motors with motor drivers

Practical sessions
with motor control
scenarios

Evaluation of motor
control designs CLO 3, CLO

4

8 Sensor Interfacing: LDR,
Ultrasonic, Temperature Sensor
with Arduino

Hands-on sensor
interfacing tasks,
peer feedback

Demonstration and
report on sensor
integration

CLO 3

9 Display Interfacing: LCD and
Infrared sensors

Lecture with
practical tasks,
troubleshooting

Submission of
interfacing tasks CLO 3, CLO

4

7 | P a g e

10 Programmable Peripheral
Interface (PPI): 8255A, Seven-
Segment Display, LED
connection

Lecture, live coding
exercises, practical
implementation

Evaluation of PPI-
based designs CLO 4, CLO

5

11 Assembly Coding Tasks: SSD
display 0-9, LED glow program

Individual coding
tasks, peer review

Submission of
assembly code

CLO 2, CLO
4

12 Dot Matrix Display and PPI
Interfacing: Programmable
Peripheral Interface with Dot
Matrix Display

Guided exercise,
real-world
application
examples

Functional evaluation
of Dot Matrix
interface CLO 4

13 Advanced Interfacing: Digital-
to-Analog Converter, Stepper
Motor

Lecture with
practical exercises

Demonstration and
final submission CLO 3, CLO

5

14 Project Discussion &
Finalization: Microcontroller
application design

Brainstorming,
group discussions,
iterative feedback

Project proposal
submission CLO 5

15 Capstone Project Work: End-to-
end microcontroller application
development

Group work,
mentoring sessions

Weekly progress
review CLO 5

16 Final Project Presentation:
Showcase of microcontroller-
based applications

Presentation and
evaluation by a
panel

Evaluation of final
project CLO 5

PREFERRED TOOLS

• Arduino IDE,
• Proteus 8 Professional (or higher versions),
• TinkerCad,
• MDA-8086 Kit.

TEXT/REFERENCE BOOKS

a) Microprocessors and Microcomputer-Based System Design by Mohamed Rafiquzzaman.
b) The 8051 Microcontroller and Embedded systems: using Assembly and C by Muhammad Ali

Mazidi, Janice Gillispie Mazidi, Rolin D. Mckinla.
c) The AVR Microcontroller and Embedded Systems Using Assembly and C: Using Arduino Uno

and Atmel Studio by Sepehr Naimi, Sarmad Naimi, Muhammad Ali Mazidi (2nd ed.)
d) Microprocessor and Interfacing Programming and Hardware by Douglas V. Hall

8 | P a g e

Experiment no: 01
Experiment Title: Understand the component of the 8086-trainer board.

MDA-8086 Kit Diagram

Figure 1.1: MDA-8086 Kit Diagram

Figure 1.2: MDA-8086 Kit Circuit Diagram
The function of IC's at MDA-8086 System Configuration

1. CPU (Central processing unit): Using Intel 8086, using 14.7456MHz.
2. ROM (Read Only Memory): It has program to control user's key input, LCD display, user's

program. 64K Byte, it has data communication program. Range of ROM Address is

9 | P a g e

F0000H FFFFFH.
3. SRAM (Static Random-Access Memory): Input user's program & data. Address of memory

is 00000H 0FFFFH, totally 64K Byte.
4. DISPLAY: Text LCD Module, 16(Characters)×2(Lines)
5. KEYBOARD: It is used to input machine language. There are 16 hexadecimal keys and 8

function keys.
6. SPEAKER: Sound test.
7. RS-232C: Serial communication with IBM compatible PC.
8. DOT MATRIX LED: To understand & test the dot matrix structure and principle of display.

It is interfaced to 8255A(PPI).
9. A/D CONVERTER: ADC0804 to convert the analog signal to a digital signal.
10. D/A CONVERTER: DAC0800 (8-bit D/A converter) to convert the digital signal to the

analog signal and to control the level meter.
11. STEPPING MOTOR INTERFACE: Stepping motor driver circuit is designed.
12. POWER: AC 110~220V, DC +5V 3A, +12V 1A, -12V 0.5A SMPS.

MDA-8086 Address Map

1. Memory Map

ADDRESS MEMORY DESCRIPTION

00000H~0FFFFH RAM PROGRAM & DATA MEMORY

F0000H~FFFFFH ROM MONITOR ROM

10000H~EFFFFH USER’S RANGE

ADDRESS I/O PORT DESCRIPTION
00H~07H LCD &

KEYBOARD
LCD Display
00H: INSTRUCTION REGISTER
02H: STATUS REGISTER
04H: DATA REGISTER KEYBOARD
01H: KEYBOARD REGISTER (Only read)
01H: KEYBOARD FLAG (Only write)

08H~0FH 8251/8253 8251(Using to data communication) 08H: DATA REGISTER
0AH: INSTRUCTION/STATUS REGISTER
8253 (TIMER/COUNTER)
09H: TIMER 0 REGISTER
0BH: TIMER 1 REGISTER
0DH: TIMER 2 REGISTER
0FH: CONTROL REGISTER

10 | P a g e

10H~17H 8259/SPEAKER 8259(Interrupt controller) 10H: COMMAND REGISTER
12H: DATA REGISTER SPEAKER
11H: SPEAKER

18H~1FH 8255A-CS1/
8255A-CS2

8255A-CS1(DOT & ADC INTERFACE)
18H: A PORT DATA REGISTER
1AH: B PORT DATA REGISTER
1CH: C PORT CONTROL REGISTER
8255-CS2(LED & STEPPING MOTOR)
19H: A PORT DATA REGISTER
1BH: B PORT DATA REGISTER
1DH: C PORT CONTROL REGISTER
1FH: CONTROL REGISTER

20H~2FH I/O EXTEND CONNECTOR
30H~FFH USER’S RANGE

Operation Introduction
MDA-8086 has high performance 64K-byte monitor program. It is designed for easy function. After power is
on, the monitor program begins to work. In addition to all the key function the monitor has a memory
checking routine.

• RES→ System reset
• STP→ Execute user's program, a single step
• AD→ Set memory address
• GO→ Go to user's program or execute monitor functions
• DA→ Update segment & Offset and input data to memory
• MON→ Immediately break user's program and Non maskable interrupt.
• : → Offset set
• REG→ Register Display.

• +→ Segment & Offset +1 increment. Register display increment.
• -→ Segment & Offset -1 increment. Register display decrement.

11 | P a g e

8255 Programmable Peripheral Interface Controller

• It has 24-bit input/output pins

• It consists of three ports: port A, port B and port C- all of which are 8 bits
• It also consists of an 8-bit control register (CR)

• The eight bit of port C can be used as individual bits or be grouped in two 4-bit ports: Cupper(CU)

and C lower(CL)
• The functions of these ports are defined by writing a control word in the control register

Group A Group B
Port A Port B
Port C (Upper 4 bit) Port C (Lower 4 bit)

8086 Instruction Set Summary

Data Registers AX (Accumulator Register) AH AL
BX (Base Register) BH BL
CX (Count Register) CH CL
DX (Data Register) DH DL

Segment Registers CS (Code Segment)
DS (Data Segment)
SS (Stack Segment)
ES (Extra Segment)

Index Registers SI (Source Index)
DI (Destination Index)

Pointer Registers SP (Stack Pointer)
BP (Base Pointer)
IP (Instruction Pointer)

 FLAGS Registers

Bit Name Symbol

Status Flags

0 Carry Flag CF
2 Parity Flag PF
4 Auxiliary Carry Flag AF
6 Zero Flag ZF
7 Sign Flag SF
11 Overflow Flag OF
8 Trap Flag TF

12 | P a g e

9 Interrupt Flag IF Control Flags
10 Direction Flag DF

Data Transfer Instructions

Arithmetic

Logical and Bit Manipulation

13 | P a g e

Shift and Rotate

Program Control Instructions

14 | P a g e

Experiment no: 02
Experiment Title: Understand the EMU8086 Microprocessor Emulator.

Emulation Kit
Emu8086 is a software emulation of Intel's 8086 microprocessor, and I/O Emulation Kit is a software
emulation of a group of hardware devices that can be controlled by Emu8086 virtual central processing unit
(CPU).
Available hardware devices in I/O Emulation Kit include: Dot Matrix Display, Seven Segment Display,
ASCII LCD Display, Group of LEDs, Push Buttons Input, Keyboard Input, Switches Input, Thermometer
Input and Pressure Gauge Input.

Download the I/O Emulation Kit with Help Files and Source Code (Version 1.75b) from the below link:
https://sites.google.com/site/hawawebsite/more/emulation-kit

Figure 1.3: EMU8086 Microprocessor Emulator

You can use the following video link to install the software:
https://www.youtube.com/watch?v=nA5GAshhe18

https://sites.google.com/site/hawawebsite/more/emulation-kit
http://www.youtube.com/watch?v=nA5GAshhe18

15 | P a g e

Experiment no: 03
Experiment Title: Learn 8086 16-bit Intel Microprocessor, its register and assembly level
programming.
Objectives

• Learn assembly programming by practicing simple programs including average calculation of
3/4/5/more numbers

• Calculate area of a rectangle and a triangle
• Temperature conversion from °C to °F, conversion from °F to °C, conversion from °C to °K,

conversion from °K to °C
• Counting tiles problems.

Instructions:

System Reset

Set Memory address

Update segment && offset.
Execute user’s program, a single step.

Go to user’s program or execute monitor functions.

Immediately break user’s program and Non makeable interrupt.

Register display
Segment & offset +1 increment. Register display increment.

Segment & offset -1 increment. Register display increment.

From the emulator you will get the HEX code for your assembly language program. For execute code and
get the result first of all press RES button then press DA button, now type your HEX code here go to next
address pressing + button. After completing the code typing you have to press STP button for executing the
code. Now for watch result press REG button then you can see the result in the display of MDA-Win8086.

Instruction set:

MOV: This instruction allows copying the value of one register into another register.
ADD: This instruction adds two numbers.
SUB: This instruction subtracts a number from another number.
MUL: This instruction multiplies two numbers.
DIV: The instruction divides a number by another number.
AX= It is called accumulator register.
BX= It is called base register. CX= It is called count register. DX=It is called data register

A

D
 ST

RE

+
-

RE

MO

16 | P a g e

MOV AX, 39
MOV BX, 273 ADD AX, BX INT 3

Problem 1: Temperature conversion from °C to °K let, temperature = 39°C
1°K=1°C + 273

Output:

AX=0138 BX=0111
CX=0000 DX=0000

Result Verification:

K= 39+273= 312

Discussion: We know, °K= °C + 273
At first, 27 loaded in AX register and the address is 0404 and 111 replaced in BX register and its
address is 0407. Now, AX, BX are added in address 041A. After pressing STP and REG, it
shows the result.

INT 3: INT 3 is a special one-byte instruction having op-code is CCH. that is inserted by
debuggers at the instruction where the user has set a breakpoint to occur. When it’s hit, the
interrupt handler breaks into the debugger and then replaces the original instruction so that
execution can proceed when the user is ready.

Merge Problem 1 and Problem 2 and show the students about the task done by the INT3

Problem 2: Temperature conversion from °K to °C let, temperature = 270°K

MOV AX, 270
MOV BX, 273 SUB AX, BX INT 3

Output:

AX=FFFD BX=0111
CX=0000 DX=0000

Result Verification:

C= 270-273= -3 = FFFDH

17 | P a g e

MOV AX, 2
MOV BX, 3 ADD AX, BX

Problem 3: Average of 3 numbers: (2+3+5)/3

Discussion: We know, °C = °K – 273
At first, 10E replaced in Ax register and the address is 0404 and 111 replaced in Bx register and
its address is 0407. Now, Ax, Bx are subtract in address040A.After pressing STP and REG, it
shows the result.

MOV BX, 5 ADD AX, BX MOV BX, 3 DIV BL
INT 3

Output:

AX=0103 BX=0003
CX=0000 DX=0000

Result Verification:

Avg= (2+3+5)/3= 3
AL = 3, AH = 1

Discussion:
At first, load 2 in AX register and the address is 0404 and load 3 in BX register and its address is
0407. Now, AX, BX are added in 040A then load 5 in BX in 040C, and AX, BX are added again
in 040F. Now, load 3 in BX and the address is 0411. Then BL is divided in 0413 address. After
pressing STP and REG, it shows the result.

Problem 4: Average of 5 numbers: ((2+3+4+1+5)/5)

18 | P a g e

MOV AX, 2
MOV BX, 3 ADD AX, BX MOV BX, 4 ADD AX, BX MOV BX, 1 ADD AX, BX MOV BX,
5 ADD AX, BX MOV BX, 5 DIV BL
INT 3

Output:

AX=0003 BX=0005
CX=0000 DX=0000

Result Verification:

Avg= (2+3+4+1+5)/5= 15/5 AL = 3, AH = 0

Discussion:

Problem 5: Floor size 20*20, Tiles size 2*2. How many tiles are needed to cover up the floor?

At first, 2 replaced in Ax register and the address is 0404 and 3 replaced in Bx register and
its address is 0407. Now, Ax, Bx are added in 040A then 4 replaced in Bx in 040C, and Ax,
Bx are added again in 040F. Now, 1 replaced in Bx and the address is 0411. Then Bx is
added in 0414 address and again 5 replaced in Bx and the address is 0416 then Bx is added
in 0419.
Now, 5 replaced in Bx and the address is 041B. Then Ax is divided by BL in 041D address.
After pressing STP and REG, it shows the result.

19 | P a g e

MOV AX, 1
MOV CL, 5
L1: MUL CL LOOP L1
MOV DX, AX
MOV AX, 1
MOV CL, 3
L2: MUL CL LOOP L2
MOV BX, AX

Problem 6: Factorial Operation: 5! – 3!

MOV AX, 20
MOV BX, 20
MUL BL
MOV CX, AX
MOV AX, 2
MOV BX, 2
MUL BL
MOV BX, AX
MOV AX, CX
DIV BL
INT 3

Output:

AX=0064 BX=0004
CX=0190 DX=0000

Result Verification:

Tiles = (20*20)/ (2*2) = 400/4= 100 = 64H

MOV AX, DX SUB AX, BX INT 3

Output:

AX=0072 BX=0006
CX=0000 DX=0078

Result Verification:

5! – 3! = 114 = 72H; AH = 00, AL = 72

20 | P a g e

Discussion:
At first, we load 1 in AX register and load 5 in CL register then do multiply by giving loop with
CL address and move AX value in DX register. Now, again entered value 1 in AX register and 3
replaced in CL register then do multiply by giving loop with CL address and move AX value in
BX register. Then move the DX value in AX register and do subtraction of AX and BX. After
pressing STP and REG, it produces the result.

Problem 7: (5! / 3!) + 4!

MOV AX, 1
MOV CL, 5
L1:MUL CL
LOOP L1 MOV DX, AX MOV AX, 1
MOV CL, 3 L2:MUL CL LOOP L2 MOV BX, AX MOV AX, DX
DIV BL MOV DX, AX MOV AX, 1
MOV CL, 4
L3: MUL CL LOOP L3
ADD AX,DX
INT 3

Output:

AX=002C BX=0006
CX=0000 DX=0014

Result Verification:

(5! / 3!)+4!=(120/6)+24=20+24=44=2C H,
AH=00, AL=2C

21 | P a g e

Discussion:
At first, load 1 in AX register and load 5 in CL register then do multiply by giving loop with CL
register and move AX value in DX register. Again, load value 1 in AX register and 3 in CL
register then do multiply by giving loop with CL register and move AX value in BX register.
Then move the DX value in AX register and do division by BL. Now, move AX value in DX and
again entered value 1 in AX register and 4 replaced in CL register then do multiply by giving
loop with CL address. At last, we do addition of DX and AX. After pressing STP and REG, we
get the result.

Problem 8: (2! *3! *4!) +4!

MOV AX, 1
MOV CL, 2 L1:MUL CL LOOP L1 MOV DX, AX MOV AX, 1
MOV CL, 3 L2:MUL CL LOOP L2 MOV BX, AX MOV AX, DX MUL BL MOV
DX, AX MOV AX, 1
MOV CL, 4 L3:MUL CL LOOP L3 ADD AX, DX INT 3

Output:

AX=0138 BX=0018
CX=0000 DX=0120

Result Verification:

(2! * 3!) + 4! = (2 * 6) + 24 = 12 + 24 = 36 =
24 HDH=00, DL=24

22 | P a g e

Discussion:
At first, load 1 in AX register and load 2 in CL register then do multiply by giving loop with CL
address and move AX value in DX register. Again, enter value 1 in AX register and 3 in CL
register then do multiply by giving loop with CL address and move AX value in BX register.
Then move the DX value in AX register and do division by BL. Now, move AX value in DX
and again load value 1 in AX register and 4 in CL register then do multiply by giving loop with
CL address. Now, we do addition of DX and AX in address. At last, we do addition of DX and
AX. After pressing STP and REG, we get the result.

Problem 9: (4!/2!)/3!

MOV AX, 1
MOV CL, 4 L1:
MUL CL LOOP L1 MOV DX, AX MOV AX, 1
MOV CL, 2 L2:
MUL CL LOOP L2 MOV BX, AX MOV AX, DX DIV BL
MOV DX, AX MOV AX, 1
MOV CL, 3 L3:
MUL CL LOOP L3 MOV BX, AX MOV AX, DX DIV BL
INT 3

Output:
AX=0002 BX=0006
CX=0000 DX=000C

Result Verification:

(4! / 2!)/3! =(24/2)/6=12/6=2=2HAH=00,
AL=02

23 | P a g e

Problem 10: Byte with Byte Division

ORG 100h
.MODEL SMALL
.DATA
NUM_1 DB 0F2H NUM_2 DB 4H
.CODE
MOV BH, NUM_2 ;Load numerator in BH MOV AL, NUM_1 ;Load denominator in AL
DIV BH ;Divide BH by AL
RET

Output:

The DIV instruction divides BH by AL. F2 divided by 04 gives
quotient of 3C and give 02 as a remainder. AL stores
the quotient and remainder is stored in AH register.

AX=023C

• ORG (abbr. for ORiGin) is an assembly directive (not an instruction). It defines where the

machine code (translated assembly program) is to place in memory. As for ORG 100H this
deals with 80x86 COM program format (COMMAND) which consist of only one segment
of max. 64k bytes. 100H says that the machine code starts from address (offset) 100h in this
segment, effective address is CS:100H.

• With .model small you get a program where CS points to a 64k bytes code segment and DS
point to 64k bytes data segment. Thus, code and data both use 64k bytes maximum space.

Discussion:
At first, 1 replaced in AX register and 4 replaced in CL register then do multiply by giving
loop with CL address and move AX value in DX register. Again, entered value 1 in AX
register and 2 replaced in CL register then do multiply by giving loop with CL address
and move AX value in BX register. Then move the DX value in AX register and do
division by BL. Now, move AX value in DX and again entered value 1 in AX register
and 3 replaced in CL register then do multiply by giving loop with CL address. Now, we
move the AX value in BX register then move the DX value in register AX and divide the
value by BL. After pressing STP and REG, we get the result.

24 | P a g e

Problem 11: Word with Word Division
ORG 100h
.MODEL SMALL
.DATA
NUM_1 DW 0F213H NUM_2 DW 41A8H
.CODE
MOV AX, NUM_1 ;Load numerator in AX DIV NUM_2 ;Divide AX by NUM_2 RET

Output:

The output window shows that the division of F213H by
41A8 gives the remainder of 2D1B into DX register and 03
as a quotient into AX.

AX=0003 DX=2D1B

Conclusion:
In this experiment, we have learnt conversion from °C to °F, conversion from °F to °C, conversion from °C
to °K, Conversion from °K to °C, Average of 3 numbers, average of 5 numbers, area of rectangle, area of
triangle, find how many tiles. After performing those operation, we use assembly language in 8086
microprocessors which results in getting the correct output.
Example: HomeWorks

1. Temperature conversion from °C to °F (37°C)
2. Temperature conversion from °F to °C (110°F)
3. Temperature conversion from °F to °K (130°F) ; AX=0547H; K=(F-32)*5/9+273;
4. Temperature conversion from °K to °F (300°K); F=9(K-273)/5+32
5. 3! +4!
6. (4! + 3!) - 2!
7. (1! * 2!) * 6!

25 | P a g e

8. Find out the average of the ten numbers.
9. Factorial Operation: 7! – 4! + 2!
10. Floor size 80*80, Tiles size 4*4. How many tiles will be required to pave up the floor?

26 | P a g e

Experiment no: 04
Experiment Title: To get familiar with 8051 Microcontroller and its simulation tools including Keil C51
Evaluation Kit and Proteus Kit.
Theory
Microcontroller (MC) is called a computer on chip science it includes microprocessor with internal ROM,
RAM, parallel and serial ports within single chip. MC is broadly used in washing machines, vcd player,
microwave oven, robotics and etc. 8051 is an 8-bit microcontroller, means 8-bit data bus, means able to
read, write and process 8-bit data. Architecture of 8051 is presented in figure 1. 8051 executes code from an
embedded masked ROM. Intel's original MCS-51 family was developed using N-type metal-oxide-
semiconductor (NMOS) technology like its predecessor Intel MCS-48, but later versions, identified by a
letter C in their name (e.g., 89C51), used complementary metal-oxide- semiconductor (CMOS) technology
and consumed less power than their NMOS predecessors. This made them more suitable for battery
powered devices.
In this particular experiment you are going to use AT89C52, which is an 8-bit microcontroller and belongs
to Atmel's 8051 family. AT89C52 has 8KB of Flash programmable and erasable read only memory
(PEROM) and 256 bytes of RAM. AT89C52 has an endurance of 1000 Write/Erase cycles which means
that it can be erased and programmed to a maximum of 1000 times.

Figure 2.1: 8051 Microcontroller Architecture

You need to understand three (3) parts of 8051 including –Oscillator and I/O ports to understand this
experiment.

27 | P a g e

Oscillator: It is used for providing the clock to 8051 MC (using to input pins XTAL2 and XTAL1) and
decides the speed of MC. In this experiment, you are going to use a crystal oscillator and its frequency varies
from 4MHz to 30 MHz, but normally it formulates11.0592 MHz frequency.
Input Output Ports: There are four input-output ports available P0, P1, P2, and P3. Each port is 8- bit
wide and has special function registers P0, P1, P2, and P3 which are bit addressable which, means each bit
can be set or reset by the Bit instructions (SETB for high, CLR for low) independently. The data at any port
that is transmitting or receiving is in these registers. The port 0 can perform dual works. It is used as a
Lower order address bus (A0 to A7) multiplexed with 8-bit data bus P0.0 to P0.7 is AD0 to AD7 respectively
the address bus and data bus are demultiplex by the ALE signal and latch which is further discussed in
details. P1 is a true I/O port (P1.0 to P1.7), because it doesn't have any alternative functions as is the case
with P0, but can be configured as general I/O only. Port 2 can be used as an I/O port as well as a higher
order address bus A8 to A15. Port 3 also has dual functions it can be worked as I/O as well and each pin of
P3 has a specific function and you will learn in details of each port later.

Figure 2.2: AT89c51 Architecture

Tools:
1. KeilµVission5 - Keil Microcontroller Tool includes C/C++ compilers, integrated development

environments, RTOS, middleware, as well as debug adapters and evaluation boards for Arm
Cortex®-M based devices.

2. Proteus 8 Professionals- Proteus is a complete software solution for circuit simulation and PCB
design. It comprises several modules for schematic capture, firmware IDE, and PCB layout that
appear as tabs inside a single, integrated application. Proteus virtual system modeling (VSM) bridges
the gap in the design life cycle between schematic capture and PCB layout. It enables you to write and
apply your firmware to a microcontroller component on the schematic (PIC, AVR, ARM, 8051, etc.)
and then co-simulate the program within a mixed-mode SPICE circuit simulation.

28 | P a g e

Experiment no: 05
Experiment Title: Increase or Decrease delay and Change the clock speed from on Keilu Vision 5 Simulation
Software.

Methodology:
Complete the following task according to the given instructions:

1. Open: KeilµVision 5
2. Project (From Menu Bar)
3. New Vision Project 4. Create a project folder in Desktop (e. g. CSE3118lab) and
5. Open a file with a name (e.g. cse3118)
6. Save
7. A window appears: Select device for Target 1 ‘Target 1’
8. Click on ATML (+)
9. Select AT89C51 (8051-based Fully Static 24 MHz CMOS controller with 32 I/O lines)
10. OK
11. Yes
12. Click File (From menu bar)
13. Select new
14. File (from menu bar)
15. Click on Save as
16. Give a file name with extension .c (e.g. cse3118.c)
17. Write the following code on the text file.

#include void delay(unsigned int);
void main(void) { P1_1=0; P1_2=0;
delay(300); P1_1=1; P1_2=1;
delay(300);
}
void delay(unsigned int itime) { int i,j;
for(i=0;i<itime;i++); for(j=0, j<5000; j++);
}

18. Click on +Target 1 (From the left side of the window)
19. Click on Rt. Mouse button on Source Group 1
20. Select Add existing files to Group ‘Source Group 1’
21. Select: file c3118.c
22. Click on Add
23. Click on Close
24. Create an environment for creating a Hex file by clicking Target 1 (Rt. Mouse button)
25. Select Option for Target ‘Target 1’
26. Click on Target
27. Set frequency Xtal (MHz): 12 MHz
28. Select Output and
29. Click on Create Hex File (Hex: 80)
30. OK
31. Click on Translate (or Press CTRL + F7: To see the errors on the code Menu bar)
32. Click on Build (or F7)
33. Go to the Project folder (CSE442lab)
34. Go to the Objects folder in the Project folder (CSE442lab)
35. Find Hex file (cse442.hex)
Go to the software PROTEUS Professionals

29 | P a g e

Figure 2.3: Circuit Diagram of the Experiment

Draw the above circuit diagram by selecting the appropriate tools from the PROTEUS.
a. Open: Proteus 8 Professionals
b. Select: ISIS
c. Select: P (Pick Devices) for Search
d. Components: AT89C51, Resistor, LED, Capacitors, Crystal to design the above diagram, (by typing in

the keyword area) and select a terminal mood from the right side for ground.
e. Set the value of all resistors to 100 ohms (right mouse click on resistor)
f. Set the value of all capacitors to 60 picos
g. Set value crystal 12MHz
h. Right click on AT89C51(circuit) and select program from project folder -> object folder-

>cse3118.hex file->open-> ok
i. Click Run (On the bottom left corner) of the screen.

Exercise:

• Simulate 8086 interfacing with 7 segments using the masm32 compiler.

30 | P a g e

Experiment no: 06
Experiment Title: Interfacing basic LED blink and basic 4x4 keypad with Arduino.
Objective:

• Interfacing Arduino analog and digital ports.
• Interfacing Arduino digital ports with 4x4 keypad and use of serial monitor for value cross checking.

Description: The pins on the Arduino can be configured as either inputs or outputs. Pins configured as
OUTPUT with pinMode() are said to be in a low-impedance state. This means that they can provide a
substantial amount of current to other circuits. Atmega pins can source (provide positive current) or sink
(provide negative current) up to 40 mA (milliamps) of current to other devices/circuits. This is enough
current to brightly light up an LED (don't forget the series resistor), or run many sensors, for example, but
not enough current to run most relays, solenoids, or motors. Short circuits on Arduino pins, or attempting to
run high current devices from them, can damage or destroy the output transistors in the pin, or damage the
entire Atmega chip. Often this will result in a "dead" pin in the microcontroller but the remaining chip will
still function adequately. For this reason, it is a good idea to connect OUTPUT pins to other devices with
470Ω or 1k resistors, unless maximum current draw from the pins is required for a particular application.

Design:

Figure 3.1: Implementation of simple Arduino based circuits with LED.

Exercises:
• Design Arduino based switch controlled LED system.

31 | P a g e

Figure 3.2: Interfacing basic 4x4 keypad with Arduino.

Exercises:
• Design a simple calculator using Arduino and available keypad.

32 | P a g e

Experiment no: 07
Experiment Title: Printing Potentiometer value to Serial Monitor and Interfacing Piezo Buzzer with
Arduino.
Objective:

• Interfacing Arduino analog port with potentiometer and use of serial monitor for observation of
value for cross checking.

• Interfacing Arduino digital port with a simple buzzer.

Description:
The analog pins on the Arduino can be configured as either inputs or outputs. Pins configured as INPUT
with pinMode() can be used to take input from devices that generate an analog value. Potentiometers are
devices that can produce variable resistance. In this experiment we shall connect the middle wire (wiper) of
the potentiometer to an analog port of an Arduino, the other two terminals are connected to power and
ground ports of Arduino respectively. Thus when the wiper is rotated, variable resistance is provided as input
to the analog pin of Arduino, which is read and output is shown correspondingly to serial monitor.

Piezo buzzer
Piezo buzzer is an electronic device commonly used to produce sound. Piezo buzzer is based on the inverse
principle of piezo electricity discovered in 1880 by Jacques and Pierre Curie. It is the phenomena of
generating electricity when mechanical pressure is applied to certain materials and the vice versa is also true.
Such materials are called piezo electric materials. Piezoceramic is class of manmade piezoelectric material,
which poses piezo electric effect and is widely used to make “disc”, the heart of piezo buzzer. When
subjected to an alternating electric field they stretch or compress, in accordance with the frequency of the
signal thereby producing sound. Built-in functions in the Arduino library delay(), tone() and noTone() may
be used.
Design:

Figure 3.3: Interfacing 4x4 Keypad with Arduino.

Exercises:
• Design a light with dimming/brightening effect using Potentiometer and LED.

33 | P a g e

Design:

Figure 3.4: Interfacing Piezo Buzzer with Arduino.

Exercises:
• Students can test out how various frequency changes in the tone() function changes the output of

the buzzer.

34 | P a g e

Experiment no: 08
Experiment Title: Interfacing Servo motor and DC motors with motor driver with Arduino.
Objective:

• Interfacing Arduino digital port with a servo motor.
• Interfacing simple DC motors with motor driver L293D and Arduino;
• Creating the working procedures of two-wheeler car.

Description: A servo motor is a rotary actuator or linear actuator that allows for precise control of angular
or linear position, velocity, and acceleration in a mechanical system. It consists of a suitable motor coupled
to a sensor for position feedback. It also requires a relatively sophisticated controller, often a dedicated
module designed specifically for use with servo motors. The motors used in the lab has a rotational range of
180°. It consists of DC motor, gear system, Position sensor and Control circuit. Degree of rotation can be
controlled by applying the Electrical Pulse of proper width, to its Control pin. Servo library and its
associated functions such as attach(), write() may be used.
DC Motor:
A direct current, or DC, motor is the most common type of motor. DC motors normally have just two leads,
one positive and one negative. If you connect these two leads directly to a battery, the motor will rotate. If you
switch the leads, the motor will rotate in the opposite direction. The L293D has two +V pins (8 and 16).
The pin '+Vmotor (8) provides the power for the motors, and +V
(16) for the chip's logic. We have connected both of these to the Arduino 5V pin. However, if you were using a
more powerful motor, or a higher voltage motor, you would provide the motor with a separate power supply
using pin 8 connected to the positive power supply and the ground of the second power supply is connected to
the ground of the Arduino. Motor drivers acts as an interface between the motors and the control circuits.
Motors require high amount of current whereas the controller circuit works on low current signals. So the
function of motor drivers is to take a low-current control signal and then turn it into a higher-current signal
that can drive a motor. We should not drive the motor directly from Arduino board pins. This may damage
the board. Built-in functions in the Arduino library digitalWrite() and delay() may be used.

Design:

Figure 3.5: Interfacing Servo motor with Arduino.

Exercises:
• Students can test out how various delay changes in code changes the output of the motor.
• Students may experiment how to connect both Servo motor and Buzzer to the same Arduino and

combine the separate coding functions to make a cohesive program.

35 | P a g e

Design:

Figure 3.9: Interfacing DC motors with motor driver and Arduino.

Exercises:
• Students can test out how to design a working scenario of four-wheeler car using Arduino.

36 | P a g e

Experiment no: 09
Experiment Title: Interfacing LDR, Ultrasonic & Temperature Sensor with Arduino.
Objective:

• Interfacing Arduino digital port with an Ultrasonic Sensor.
• Interfacing Arduino digital port with an LM-35 temperature sensor.
• Interfacing Arduino digital port Light Dependent Resistor with Arduino.

Description:
Ultrasonic Sensor
An ultrasonic sensor is an instrument that measures the distance to an object using ultrasonic sound waves.
An ultrasonic sensor uses a transducer to send and receive ultrasonic pulses that relay back information about
an object’s proximity. High-frequency sound waves reflect from boundaries to produce distinct echo
patterns. Ultrasonic sensors work by sending out a sound wave at a frequency above the range of human
hearing. The transducer of the sensor acts as a microphone to receive and send the ultrasonic sound. The
ultrasonic sensors used in the lab, like many others, use a single transducer to send a pulse and to receive
the echo. The sensor determines the distance to a target by measuring time lapses between the sending and
receiving of the ultrasonic pulse. The working principle is simple. It sends an ultrasonic pulse out at 40kHz
which travels through the air and if there is an obstacle or object, it will bounce back to the sensor. By
calculating the travel time and the speed of sound, the distance can be calculated. Built-in functions in the
Arduino library digitalWrite() and delay() may be used.

Temperature Sensor
LM35 is a temperature sensor that outputs an analog signal which is proportional to the instantaneous
temperature. The output voltage can easily be interpreted to obtain a temperature reading in Celsius. The
advantage of lm35 over thermistor is it does not require any external calibration. The coating also protects
it from self-heating. LM35 can measure from -55 degrees centigrade to 150-degree centigrade. The
accuracy level is very high if operated at optimal temperature and humidity levels. The conversion of the
output voltage to centigrade is also easy and straight forward. The input voltage to LM35 can be from +4
volts to 30 volts. It consumes about 60 microamperes of current. In order to understand the working
principle of LM35 temperature sensor we have to understand the linear scale factor. In the features of LM35
it is given to be +10 mills volt per degree centigrade. It means that with increase in output of 10 mills volt by
the sensor vout pin the temperature value increases by one. For example, if the sensor is outputting 100 mills
volt at vout pin the temperature in centigrade will be 10-degree centigrade. The same goes for the negative
temperature reading. If the sensor is outputting -100 mills volt the temperature will be -10 degrees Celsius.
Built-in functions in the Arduino library analogRead() and delay() may be used.

LDR
An LDR is a component that has a (variable) resistance that changes with the light intensity that falls upon
it. This allows them to be used in light sensing circuits. Light Dependent Resistors (LDR) are also called
photoresistors. They are made of high resistance semiconductor material. The resistance values of LDR in
darkness are several megaohms whereas in bright light it will be dropped to hundred ohms. Built-in
functions in the Arduino library analogRead() and delay() may be used.

Design:

37 | P a g e

Figure 3.6: Interfacing Ultrasonic Sensor with Arduino.

Exercises:
• Students can test out how obstacles change the output of the sensor.
• Students may experiment how to connect Servo motor, buzzer and the ultrasonic sensor to the

same Arduino and combine the separate coding functions to make a cohesive program.
Design:

Figure 3.8: Interfacing Temperature Sensor with Arduino.

Exercises:
• Students can test out how to show temperature readings on LCD display.

Description:
Design:

38 | P a g e

Figure 3.10: Interfacing Light Dependent Resistor with Arduino.

Exercises:
• Students can test out how to combine LDR with other components to create a cohesive system.

39 | P a g e

Experiment no: 10
Experiment Title: Interfacing basic LCD display with Arduino.
Objective: Interfacing 2x20 alphanumeric LCD with Arduino digital ports.
Description: The LiquidCrystal library allows you to control LCD displays that are compatible with the
Hitachi HD44780 driver. There are many of them out there, and you can usually tell them by the 16-pin
interface. The example sketch provided prints "Hello World!" to the LCD and shows the time in seconds
since the Arduino was reset.
The LCDs have a parallel interface, meaning that the microcontroller has to manipulate several interface
pins at once to control the display. The interface consists of the following pins:

• A register select (RS) pin that controls where in the LCD's memory you're writing data to. You can
select either the data register, which holds what goes on the screen, or an instruction register,
which is where the LCD's controller looks for instructions on what to do next.

• A Read/Write (R/W) pin that selects reading mode or writing mode
• An Enable pin that enables writing to the registers
• 8 data pins (D0 -D7). The states of these pins (high or low) are the bits that you're writing to a

register when you write, or the values you're reading when you read.
• There's also a display constrast pin (Vo), power supply pins (+5V and Gnd) and LED Backlight

(Bklt+ and BKlt-) pins that you can use to power the LCD, control the display contrast, and turn
on and off the LED backlight, respectively.

The process of controlling the display involves putting the data that form the image of what you want to
display into the data registers, then putting instructions in the instruction register. The LiquidCrystal
Library simplifies this for you so you don't need to know the low-level instructions. The Hitachi-
compatible LCDs can be controlled in two modes: 4-bit or 8-bit. The 4-bit mode requires seven I/O pins from
the Arduino, while the 8-bit mode requires 11 pins. For displaying text on the screen, you can do most
everything in 4-bit mode, so example shows how to control a 2x16 LCD in 4- bit mode.

Design:

Figure 3.7: Interfacing basic LCD display with Arduino.

Exercises:
• Students can test out how to design a simple calculator using Arduino, available keypad and 2x20

LCD display.
• Students can test out how to design a system to show values in seven segment display

40 | P a g e

Experiment no: 11
Experiment Title: Interfacing Infrared Sensor (Active and Passive) with Arduino.
Objective:

• Interfacing Arduino digital port Infrared Sensor (Active) with Arduino.
• Interfacing Arduino digital port Infrared Sensor (Passive) with Arduino.

Description: An infrared sensor is an electronic device, that emits in order to sense some aspects of the
surroundings. An IR sensor can measure the heat of an object as well as detect the motion. Usually, in the
infrared spectrum, all the objects radiate some form of thermal radiation. These types of radiations are
invisible to our eyes, which can be detected by an infrared sensor. The emitter is simply an IR LED (Light
Emitting Diode) and the detector is simply an IR photodiode that is sensitive to IR light of the same
wavelength as that emitted by the IR LED. When IR light falls on the photodiode, the resistances and the
output voltages will change in proportion to the magnitude of the IR light received. This active infrared
sensor includes both the transmitter as well as the receiver. In most of the applications, the light-emitting
diode is used as a source. LED is used as a non-imaging infrared sensor whereas the laser diode is used as
an imaging infrared sensor. Built-in functions in the Arduino library digitalWrite() and delay() may be
used.

Design:

Figure 3.11: Interfacing Infrared Sensor (Active) with Arduino.

Exercises:
• Students can test out how to combine IR Sensor with other components to create a cohesive

system.

Design:

41 | P a g e

Figure 3.12: Interfacing Infrared Sensor (Passive) with Arduino.

Exercises:
• Students can test out how to combine PIR Sensor with other components to create a cohesive

system.

42 | P a g e

Figure 2.1: 8255 Block and PIN OUT

Experiment no: 12
Experiment Title: Introduction to 8255A Programmable Peripheral Interface and Experiment with Seven
(7)-Segments Display and LED Connection Program
8255A is a general purpose programmable I/O device used in microprocessors. It consists of three 8-bit
bidirectional I/O ports with 24 I/O pins (figure 1) which may be individually programmed in 2 groups of 12
pins and used in 3 major modes of operation.

Figure 5.1: 8255 Block Diagram and PIN OUT

43 | P a g e

82C55 has three mode of operation including Mode 0, 1, 2.

Mode 0- Basic Input/Output Mode
Causes 82C55 to function either as a buffered input device the pins of Group B/Group A to be programmed
as simple I/O ports.

Mode 1- Strobe Input/Output Mode
Causes operation port A and/or port B to function as latching input devices. Similar to mode 0 but data are
transferred through port A/port B and handshaking (DATA READY, ACKNOWLEDGE) and interrupt
request signals are provided by port C. Strobe inputs signal to microprocessor retrieve data that are stored into
the port registers
The address of the control register, port A, port B and port C are given below:

PPIC_C EQU 1FH
PPIC EQU 1DH

PPIB EQU 1BH

PPIA EQU 19H

Figure 5.2: Interfacing 8255 with Seven Segment and LEDs

44 | P a g e

Experiment no: 13
Experiment Title: Write an assembly code to display 0-9 in Seven Segment Display (SSD)

• For seven segments display we use 0 for ON and 1 for OFF.
• Control register values will be the column headings of the following table:

45 | P a g e

Assembly Code:
S SEGMENT PARA PUBLIC 'CODE' ASSUME CS: S
ORG 1000H

START:
;control register turn on MOV AL,80H OUT 1FH,AL
SSD:
;display 0 MOV AL,0C0H OUT 19H,AL
;for delay
MOV CX,0FFFFH L0:LOOP L0
;display 1 MOV AL,0F9H OUT 19H,AL
;for delay
MOV CX,0FFFFH L1:LOOP L1
;display 2 MOV AL,0A4H OUT 19H,AL
;for delay
MOV CX,0FFFFH L2:LOOP L2
;display 3 MOV AL,0B0H OUT 19H,AL
;for delay
MOV CX,0FFFFH L3:LOOP L3
;display 4 MOV AL,099H OUT 19H,AL
;for delay
MOV CX,0FFFFH L4:LOOP L4
;display 5 MOV AL,092H OUT 19H,AL
;for delay
MOV CX,0FFFFH L5:LOOP L5
;display 6 MOV AL,082H OUT 19H,AL
;for delay
MOV CX,0FFFFH L6:LOOP L6
;display 7 MOV AL,0F8H OUT 19H,AL
;for delay
MOV CX,0FFFFH L7:LOOP L7
;display 8 MOV AL,080H OUT 19H,AL
;for delay
MOV CX,0FFFFH L8:LOOP L8
;display 9 MOV AL,090H OUT 19H,AL
;for delay
MOV CX,0FFFFH L9:LOOP L9
JMP SSD S ENDS END START

Steps to Run code in MDA-8086 through PC:

• At first copy paste the .ASM file in the mda folder of computer
• Then open cmd and write cd\ and press enter
• Then type cd mda and press enter
• Then type MASM and press enter
• Then write the file_name.ASM and press enter. For our example we will write S.ASM
• Then write the file_name.OBJ and press enter. For our example we will write S.OBJ

46 | P a g e

• Then write the file_name.LST and press enter. This step is
used for error checking. For our example we will write
S.LST

• Then when it wants .CRF file simply press enter
• If there is any error in the file, then after this line we can

see the number of errors.
• If any error is found, then type EDIT file_name.LST and

press enter.
• If no error is found, then type LOD186 and press enter
• Then type file_name.OBJ and press enter. For our

example we will write S.OBJ
• Then type file_name.ABS and press enter. For our

example we will write S.ABS
• Then type COMM and press enter.
• Then a blue window will occur
• We will now turn on the kit and we will select PC mode

from kit mode
• Then press RESET
• If your kit is ok, then it will show up in the blue screen
• Then type L from keyboard and press enter
• If L does not show up, then it means your PC is not

connected and you have to try in different PC
• Otherwise press F3 and in the pop-up screen write

filename.ABS and press enter. For our example we will
write S.ABS

• Then in the kit select kit mode from PC mode
• Then press RESET
• After that press AD
• Then Press GO
• Then you can see the output in the seven segments

display

47 | P a g e

48 | P a g e

49 | P a g e

Experiment no: 14
Experiment Title: Write an assembly code to glow R1, G, Y and R2 in LED Display respectively.

• For LED display we use 1 for ON and 0 for OFF
• Control register value will be the column headings of the following table:

Assembly Code:
L SEGMENT PARA PUBLIC 'CODE' ASSUME CS: L
ORG 1000H START:
;control register turn on MOV AL,80H
OUT 1FH,AL
;segment address forcefully off MOV AL,0FFH
OUT 19H,AL LED:
;R1 LED turn on MOV AL,01H OUT 1BH,AL
;for delay
MOV CX,0FFFFH LR1:LOOP LR1
;G LED turn on MOV AL,02H OUT 1BH,AL
;for delay
MOV CX,0FFFFH LG:LOOP LG
;Y LED turn on MOV AL,04H OUT 1BH,AL
;for delay
MOV CX,0FFFFH LY:LOOP LY
;R2 LED turn on MOV AL,08H OUT 1BH,AL
;for delay
MOV CX,0FFFFH LR2:LOOP LR2 JMP LED
L ENDS END START

50 | P a g e

Steps to run code in MDA-8086 through PC:
• At first copy paste the .ASM file in the mda folder of computer
• Then open cmd and write cd\ and press enter
• Then type cd mda and press enter
• Then type MASM and press enter
• Then write the file_name.ASM and press enter. For our example we will write L.ASM
• Then write the file_name.OBJ and press enter. For our example we will write L.OBJ
• Then write the file_name. LST and press enter. This step is used for error checking. For our

example we will write L.LST
• Then when it wants. CRF file simply press enter
• If there is any error in the file, then after this line we can see the number of errors.
• If any error is found, then type EDIT file_name.LST and press enter.
• If no error is found, then type LOD186 and press enter
• Then type file_name.OBJ and press enter. For our example we will write L.OBJ
• Then type file_name. ABS and press enter. For our example we will write L.ABS
• Then type COMM and press enter.
• Then a blue window will occur
• We will now turn on the kit and we will select PC mode from kit mode
• Then press RESET
• If your kit is ok, then it will show up in the blue screen
• Then type L from keyboard and press enter
• If L does not show up, then it means your PC is not connected and you have to try in different

PC
• Otherwise press F3 and in the pop-up screen write filename.ABS and press enter. For our

example we will write L.ABS
• Then in the kit select kit mode from PC mode
• Then press RESET
• After that press AD
• Then Press GO
• Then you can see the output in the LED display

51 | P a g e

Experiment no: 15
Experiment Title: Dot Matrix Display with The Microprocessor Through Peripheral Programmable
Interface 82555a
8255A is a general purpose programmable I/O device used in microprocessors. It consists of three 8-bit
bidirectional I/O ports with 24 I/O pins (figure 1) which may be individually programmed in 2 groups of 12
pins and used in 3 major modes of operation.

Figure 5.3: Circuit diagram of a DOT MATRIX

To formulate (8x8) DOTT MATRIX – two

52 | P a g e

(2) color LEDs – including RED and GREEN. Port C HIGH (1) and Port A is LOW (0) glows
corresponding RED LED, Port C HIGH (1) and Port B is LOW (0) glows corresponding GRREEN
LED.
The address of the control register, port A, port B and port C of the 8255 IC are 1E, 18, 1A and 1C
respectively.

Task : Understand the basic configuration of 8255 and the DOT matrix.
LEDs are a particular type of diode that converts electrical energy into light. In fact, LED stands for “Light
Emitting Diode”. The following figure is taken from TechTerms.com and shows the basic forward bias
electricity flow from Anode (Positive +) to Cathode (Negative -). If both side of diode have same voltage
value (1/0) then no conduction, means no current. However, if potential difference is equal to or greater than
threshold (0.7 for germanium) then there will be conduction.

Figure 5.4: Direction of Current Flow

For LEDs in MATRIX: Glow 1st ROW LEDs
You will need to select the column A0/B0 (which means A0/B0 is pulled low), and deselect other columns
by blocking their ground paths (by pulling A1/B1 through A7/B7 pins to logic high). Now, the first column
is active, and you will need to turn on the LEDs in the rows C0 through C7 of this column, which can be
done by applying forward bias voltages (HIGH) to all rows.

Jumper Setup:
You need to set the jumper as shown below before running any program with MDA kit.

53 | P a g e

Task: Understand the Setting of the Jumper.

Go to top right corner of DOT MATRIX figure.
Experimental tools:

MDA-Win8086, Computer, Microprocessor emulator Software with Integrated Assembler. The following
rules are needed to perform the lab work.
Task: Run the HEX CODE of the following program to display the letter ‘A’ on the LED matrix.

; PPIC_C EQU 1EH ; control register
; PPIC EQU 1CH ; c port
; PPIB EQU 1AH ; b port
; PPIA EQU 18H ; a port

Address: Op code instructions

1000:
1002:

B0 80 E6
1E

ORG
MOV
OUT

1000H
AL, 10000000B
PPIC_C, AL ; program PPI
;

1004: B0 FF MOV AL, 11111111B ; OFF LEDs connected to port A

1006: E6 18 OUT PPIA, AL
;

1008: BE 2C 10 L1: MOV SI, OFFSET FONT

100B: B4 01 MOV AH, 00000001B

100D: 2E 8A 04 L2:MOV AL, BYTE PTR CS:[SI]

1010: E6 1A OUT PPIB, AL

54

1012: 8A C4 MOV AL, AH
1014: E6 1C OUT PPIC, AL

1016: E8 09 00 CALL TIMER

1019:
101A:
101B:

46
F8
D0 C4

INC
CLC
ROL

SI

AH, 1

101D: 73 EF(EE) JNC L2

101F: EB E7 JMP L1

1021: CC INT 3

1022: B9 2C 01 TIMER: MOV CX, 300

1025: 90 TIMER1: NOP
1026: 90 NOP

1027: 90 NOP

1028: 90 NOP

1029: E2 FA LOOP TIMER1

102B: C3 RET
;
102C: FFFONT: DB 11111111B
102D: C0 DB 11000000B

102E: B7 DB10110111B
102F: 77 DB01110111B

1030: 77 DB01110111B

1031: B7 DB10110111B

1032: C0 DB 11000000B
1033: FF DB 11111111B

55

=2
 =1

 =4

=16

Experiment no: 16
Experiment Title: Interfacing with Digital to Analog Converter
Objective

• To understand basic theory of digital to analog converter.
• To understand the operation theory and characteristics of DAC0800.
• To understand the connectivity between MDA 8086 board and DAC0800, and Interfacing with 8255.
• To simulate example program (DAC.asm) to trace the Analog voltage changes due to the change in

digital input.
Theory:
Digital to analog convertor (D/A, DAC) is an electronics device in form of IC, which converts digital signal
to its equivalent analog signal. D/A converters are available as integrated circuits. DAC0800 is a cheap and
commonly used 8-bit DAC. Internal chip consists of reference voltage power supply (±4.5V to ±18 V), R-
2R ladder resistors network and transistor switch. The setting times of around 100ns.
There are two (2) methods of creating a DAC: Binary weighted and R-2R ladder. To achieve higher degree
of precision DAC0800 uses R-2R method. DAC resolution is decided by the analog output levels equal to
2n and 2n-1 steps size, where n is the number of inputted data bits. Thus, an 8-input DAC provides 256
discrete voltage or current levels of output.
This is basically a summing amplifier designed with suitable resistances, as shown below.

Figure 6.1: Summing Amplifier with Binary Weighted Input Resistors According to Kirchhoff Current Law
and Kirchhoff Voltage Law
I_O=I_T=I_1+I_2+I_3+I_4
=V_in/R1+V_in/R2+V_in/R3+V_in/R4
=V_in/Rf (1/2+1/4+1/8+1/16)
The voltage output is:
V_o=-R_f I_T=|R_f I_T |

56

Figure 6.2: A 3 Bit D/A Converter Block Diagram and Digital Input vs Analog Output

Figure 6.2 expresses the property of a 3-bit DAC. Three input lines (D2, D1 and D0) assume 8 input
combinations from 000 to 111. D2 is the MSB and D0 is the LSB. If the input range 0V to 1V, it can be
divided into eight equal parts (1/8 V) and each successive input is 1/8 V higher than the previous
combination, as shown in figure 1. The following points can be summarized from the graph:

• The 3 bits eight possible combinations. If a converter has n input lines, it can have 2n input
combinations.

• If the full-scale analog voltage is 1 V, the smallest unit or the LSB (0012) is equivalent to 1/2n of
1V. This is defined as resolution. In this example, the LSB =1/8V.

• The MSB represents the half of the full-scale value. In this example, the MSB (1002) =1/2 V.
• For the maximum input signal (1112), the output signal is equal to the value of the full-scale input

signal minus the value of 1 LSB input signal. Thus, the maximum input signal (1112) represents
7/8 V.

• Calculate the values of the LSB, MSB and full-scale output for an 8-bit DAC for the 0 to 10V
range.

LSB=1/28=1/256, for 10V LSB=10V/256=39mV
MSB=1/2 full scale=5V
Full Scale Output = Full Scale Value – 1 LSB
= 10V-0.039V
= 9.961 V

Figure 6.3: Interfacing DAC0808 and LF351

57

• It needs two power supplies VCC and VEE. VCC (13 pin) is +5V. A negative power supply of -
15v (VEE, 3 pin) is required for proper operation of DAC0808. This -15v supply is attached with
VEE pin of DAC0808 and also with 4th pin of Op-Amp LF351.

• VREF- pin (15 pin) of DAC0808 is attached with ground through a 5k resistor as specified in
DAC0808 datasheet. Also, VREF+ (14 pin) is attached with +10v supply through a 5k resistor.
This means that output of DAC can vary from 0v to 10v only. You can increase this reference
voltage in order to get more voltage change, for example by attaching +15v with VREF+ pin

• Using this circuit, digital input given to DAC0808 can be converted in to analog output using this
formula.

=10V/5k(255/256) =2mA(255/256)=1.992mA when D0/A8 (LSB)=1, D0/A8=1,…. D7/A1 (MSB)=1
Output Voltage Vo= Rf*Iout=2mA x 5k x255/256= 9.961V Directly we can write the Vo equation as
follows:

Operational Amplifiers (Op amp) is extensively used as main building block of digital to analog
convertor. Op-Amp IC 741 or LM741 is one of the most used operational amplifier integrated circuits that
performs both mathematical operations and amplification functions. This small chip mainly performs
mathematical operations like addition, subtraction, multiplication, division, differentiation, integration, etc.
in various circuits.
The functionality of each pin is as follows:
Power Supply Pins (Pin 4 and Pin 7): Pin 4 and Pin 7 are negative and positive voltage supply terminals
respectively. The power required for IC to operate is received from both these pins. The voltage level
between these pins can be in the range of 5V to 18V.
Input Pins (Pin 2 and Pin 3): Pin 2 and pin 3 are input pins for the op-amp IC. Pin 2 is considered as
inverting input and pin 3 is considered as non-inverting input. When the voltage at pin 2 is greater than the
voltage at pin 3, i.e., the voltage at inverting input is higher, then the output signal is low. Similarly, when
the voltage at pin 3 is greater than the voltage at pin 2, i.e., the voltage at the non- inverting input is higher,
then the output signal is high.

58

Output Pin (Pin 6): Pin 6 is the output pin of op-amp IC 741. The output voltage at this pin depends on the
voltage level on input pins and the feedback approach used. When the voltage at this pin is high, this means
that the output voltage is similar to the positive supply voltage.
Similarly, when the voltage at this pin is low, this means that the output voltage is similar to the negative
output voltage.

D/A Converter Interface

Figure 6.4: Interfacing Level Meter, DAC0808 and 8255

59

When you increase the amplitude of a sound wave, you are essentially increasing the amount of energy that
the wave is carrying, which makes the sound louder. This is because the energy from the wave is distributed
over a larger area, which causes the sound to be more intense and louder.

60

Experiment no: 17
Experiment Title: Interfacing with Stepper Motor
Objective:

• To understand basic theory of Stepper Motor.
• To understand the operation theory and characteristics of Stepper Motor.
• To understand 1-phase, 2-phase and 1-2 phase excitations.

In general, a motor is a device that transforms electrical energy to mechanical energy. It is a synchronous
electric motor capable of dividing a complete rotation into many steps. Stepper motors typically consist of a
permanent magnet shaft (rotor) encircled by a stator. As long as the motor is not large, the angular position
of the motor can be precisely regulated without the use of a feedback device. As a result, it operates in a
simple precise open-loop system in which the output is directly proportional to the input.
Permanent Magnet (PM) Stepper Motors consist of permanent magnet rotors with no teeth, which are
magnetized perpendicular to the axis of rotation. By energizing the four phases (in sequence), the rotor rotates
due to the attraction of magnetic poles. The stepper motor shown in the diagram below will take 90-degree
steps as the windings are energized by passing electricity between the coils of the stator in clockwise
sequence: X, X’, Y, Y’ to complete a revolution. Energized a particular phase by DC current will create N
pole of the stator (the source part of electricity) and S pole to the other wise, which interact the N pole of
the rotor. 45-degree steps are created by energizing consecutive two phases. As example, SA and SB
creates 45-degree steps rotate will point to the middle of A and B phases. Anti-clockwise rotation will be
created by energized the stators from opposite direction.

Figure 6.5: Stepper Motor and its Working Strategy

61

Since stepping motor makes step- by-step movement and each step is equidistant, the rotor and
stator magnetic field must be synchronous. During start-up and stopping, the two fields may not be
synchronous, so it is suggested to slowly accelerate and decelerate the stepping motor during the start-
up or stopping period.

Figure 6.6 is used to explain the operation of simplified stepping motor (90°/step). Here the A coil and B
coil are perpendicular to each other. If either A or B coil is excited (a condition which is known as single-
phase excitation), the rotor can be moved to 0°, 90°, 180°, 270°-degree position depending on the current's
ON/OFF conditions in the coils, see Figure 6.6(a). If both coils have current flowing at the same time,
then the rotor positions can be 45°, 135°, 225°, 315°degrees as shown in Figure 6.6(b). This is known
as two-phase exception. In Figure 6.6(c), the excitation alternates between 1-phase and 2-
phase, then the motor will rotate according to 0°, 45°, 90°, 135°, 180°, 225°, 270°, 315°sequence.
This is 1-2 phase excitation; each step distance is only half of step movement of either 1-phase or 2-phase
excitation. Stepping motor can rotate in clockwise or counter-clockwise direction depending on
the current pulse sequence applied to the excitation coils of the motor. Referring to the truth tables in
Figure 6.6(a), (b), (c). If signals are applied to coil A and B according to Step 1,2,3,4,5,6,7,8, then counter-
clockwise movement is achieved. And vice-versa is true. If signals are applied according to step
8,7,6,5,4,3,2,1, then clockwise movement is achieved.

	Course Rationale
	Course Objectives
	Course Learning Outcomes (CLOs)
	Course Content
	Course Schedule
	PREFERRED TOOLS
	TEXT/REFERENCE BOOKS
	Experiment no: 01
	Experiment no: 02
	Experiment no: 03
	Experiment no: 04
	Tools:

	Experiment no: 05
	Go to the software PROTEUS Professionals
	Draw the above circuit diagram by selecting the appropriate tools from the PROTEUS.

	Experiment no: 06
	Design:
	Exercises:
	Exercises:

	Experiment no: 07
	Exercises:
	Design:
	Exercises:

	Experiment no: 08
	Design:
	Exercises:
	Design:
	Exercises:

	Experiment no: 09
	Design:
	Design:
	Exercises:
	Design:
	Exercises:

	Experiment no: 10
	Design:
	Exercises:

	Experiment no: 11
	Design:
	Exercises:
	Design:
	Exercises:

	Experiment no: 12
	Mode 0- Basic Input/Output Mode
	Mode 1- Strobe Input/Output Mode

	Experiment no: 13
	Experiment no: 14
	Assembly Code:
	Steps to run code in MDA-8086 through PC:

	Experiment no: 15
	Task : Understand the basic configuration of 8255 and the DOT matrix.
	Jumper Setup:
	Task: Understand the Setting of the Jumper.

	Experiment no: 16
	D/A Converter Interface

	Experiment no: 17

